Midterm 2 - Review - Answers

Peyam Ryan Tabrizian

Thursday, October 20th, 2011

1) -44

2) 0 (row-reduce and notice that at some point you get 2 identical rows, hence A is not invertible, hence it has determinant 0)

3)

	1	0	1		[1	0	0
P =	0	1	0	, D =	0	1	0
	[-1]	0	-2		0	0	2

Any other order/multiple of the columns P is fine too, as long as you remember that every eigenvector has to go with the corresponding eigenvalue!

- 4) **NO** (doesn't contain the **0**-vector)
- 5) **YES** (span of anything is a vector space)

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$$

dim(V) = 3

6) (a) Basis for Row(A):

$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\ -3\\ 6\\ 2\\ 5 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 3\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 3 \end{bmatrix} \right\}$$

Basis for Col(A):

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\-2\\4\\-2 \end{bmatrix}, \begin{bmatrix} 6\\-3\\9\\3 \end{bmatrix}, \begin{bmatrix} 2\\-3\\5\\-4 \end{bmatrix} \right\}$$

(b)

A =	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{3} \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \underline{1} \end{array}$	0
	$\begin{bmatrix} 0 \end{bmatrix}$	0	0	$\frac{1}{4}$	

8)

$$\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B} = \begin{bmatrix} -3 & 2\\ -4 & 3 \end{bmatrix}, [\mathbf{x}]_{\mathcal{C}} = \begin{bmatrix} -1\\ 0 \end{bmatrix}$$

9) $\hat{\mathbf{y}} = \begin{bmatrix} 3\\ -1\\ 1\\ -1 \end{bmatrix}$

$$\mathcal{B} = \left\{ \frac{1}{\sqrt{12}} \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix}, \frac{1}{\sqrt{12}} \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}, \frac{1}{\sqrt{12}} \begin{bmatrix} -1\\-1\\3\\-1 \end{bmatrix} \right\}$$
11) $\hat{x} = \begin{bmatrix} 3\\\frac{1}{2} \end{bmatrix}$, Error: $\sqrt{2}$

- 12) (a) **FALSE** (for example, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$)
 - (b) **FALSE** $(Q^T Q = I$, but not necessarily $QQ^T = I$, for example, take $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$)
 - (c) **FALSE** (it's the opposite!)
 - (d) **FALSE** (for example, take the x- axis and the y- axis in \mathbb{R}^2)
 - (e) **TRUE** (see HW5)
 - (f) **TRUE** (suppose $A\mathbf{v} = \lambda \mathbf{v}$ for some $\mathbf{v} \neq \mathbf{0}$, calculate $A^2\mathbf{v}$ in two different ways)
 - (g) **FALSE** (take A = zero-matrix)
 - (h) **TRUE** (basis theorem)
 - (i) **TRUE** (A similar to B means $A = PBP^{-1}$ for some invertible P)
 - (j) **TRUE** (use the previous question)
 - (k) **TRUE** (draw a picture)