Midterm 2 - Review - Answers

Peyam Ryan Tabrizian

Thursday, October 20th, 2011

1) -44
2) 0 (row-reduce and notice that at some point you get 2 identical rows, hence A is not invertible, hence it has determinant 0)
3)

$$
P=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & -2
\end{array}\right], D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Any other order/multiple of the columns P is fine too, as long as you remember that every eigenvector has to go with the corresponding eigenvalue!
4) $\mathbf{N O}$ (doesn't contain the $\mathbf{0}$-vector)
5) YES (span of anything is a vector space)

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\}
$$

$\operatorname{dim}(V)=3$
6) (a) Basis for $\operatorname{Row}(A)$:

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
-2 \\
-3 \\
6 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
3 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
3
\end{array}\right]\right\}
$$

$\underline{\text { Basis for } \operatorname{Col}(A):}$

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
2 \\
-2 \\
4 \\
-2
\end{array}\right],\left[\begin{array}{c}
6 \\
-3 \\
9 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
-3 \\
5 \\
-4
\end{array}\right]\right\}
$$

(b) $\operatorname{Rank}(A)=3$ (number of pivots), $\operatorname{Dim}(\operatorname{Nul}(A))=5-\operatorname{Rank}(A)=2$
7) (a) Show $T(p+q)=T(p)+T(q)$ and $T(c p)=c T(p)$
(b)

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & \\
1 & 0 & 0 & 0 & \\
0 & \frac{1}{2} & 0 & 0 & \\
0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} &
\end{array}\right]
$$

8)

$$
\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\begin{array}{ll}
-3 & 2 \\
-4 & 3
\end{array}\right],[\mathbf{x}]_{\mathcal{C}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

9) $\hat{\mathbf{y}}=\left[\begin{array}{c}3 \\ -1 \\ 1 \\ -1\end{array}\right]$
10)

$$
\mathcal{B}=\left\{\frac{1}{\sqrt{12}}\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right], \frac{1}{\sqrt{12}}\left[\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right], \frac{1}{\sqrt{12}}\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-1
\end{array}\right]\right\}
$$

11) $\hat{x}=\left[\begin{array}{l}3 \\ \frac{1}{2}\end{array}\right]$, Error: $\sqrt{2}$
12) (a) FALSE (for example, $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$)
(b) FALSE $\left(Q^{T} Q=I\right.$, but not necessarily $Q Q^{T}=I$, for example, take $\left.Q=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\right)$
(c) FALSE (it's the opposite!)
(d) FALSE (for example, take the $x-$ axis and the y - axis in \mathbb{R}^{2})
(e) TRUE (see HW5)
(f) TRUE (suppose $A \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{v} \neq \mathbf{0}$, calculate $A^{2} \mathbf{v}$ in two different ways)
(g) FALSE (take $A=$ zero-matrix)
(h) TRUE (basis theorem)
(i) TRUE (A similar to B means $A=P B P^{-1}$ for some invertible P)
(j) TRUE (use the previous question)
(k) TRUE (draw a picture)
